J.K. SHAH CLASSES

JKSC : 2018 - 19

SYJC – COMMERCE

SYJC TEST SERIES

MATHEMATICS & STATISTICS

PAPER – II

TEST - 02

DURATION : 1HR 30 MIN

CORRELATION & REGRESSION

MARKS : 30

(10)

SOLUTION SET

Q1. ATTEMPT ANY 5 OUT OF 6 (2 MARKS EACH)

01. coefficient of correlation between the variables X and Y is 0.3 and their covariance is 12. The variance of X is 9. Find standard deviation of Y

r = 0.3,
$$cov(x,y) = 12$$
, $\sigma x^2 = 9$,
r = $\frac{cov(x,y)}{\sigma x \cdot \sigma y}$
0.3 = $\frac{12}{3 \times \sigma y}$
 $\sigma y = \frac{12}{3 \times 0.3}$ = 13.33

02. The coefficient of rank correlation for a certain group of data is 2/3. If $\Sigma d^2=55$, assuming no ranks repeated ;find the no. of pairs of observation

$$R = 2/3 ; \Sigma d^{2} = 55$$

$$R = 1 - \frac{6\Sigma d^{2}}{n(n^{2} - 1)}$$

$$\frac{2}{3} = 1 - \frac{6(55)}{n(n^{2} - 1)}$$

$$\frac{6(55)}{n(n^{2} - 1)} = 1 - \frac{2}{3}$$

$$\frac{6(55)}{n(n^{2} - 1)} = \frac{1}{3}$$

$$n(n^{2} - 1) = 6 \times 55 \times 3$$

$$n(n^{2} - 1) = 990$$

$$(n - 1).n.(n + 1) = 9.10.11$$
On comparing ; n = 10

Page 1 of 12

- 03. for a bivariate data $b_{yx} = -1.2$ and $b_{xy} = -0.3$. Find correlation coefficient between x and y $\frac{\text{solution}}{r^2 = byx \ x \ bxy}$ $r^2 = -1.2 \ x \ -0.3$ $r^2 = \frac{12}{10} \ x \ \frac{3}{10}$ $r^2 = \frac{36}{100}$ $r = \pm \frac{6}{10}$ $r = -\frac{6}{10} \ (byx \ \& \ bxy \ are \ -ve)$ r = -0.6
- 04. The bivariate frequency distribution of weight (kg) and height of 60 students of SYJC as follows

Weight	Height (in cm)					
(in kg)	100 - 109	110 - 119	120 - 129	130 - 139		
40 - 44	9	6	-	3		
45 - 49	6	3	3	1		
50 - 54	-	6	3	3		
55 – 59	3	4	7	3		

a) Find marginal frequency distribution of weight

b) Find conditional distribution of weight when height lies between 110 - 119

SOLUTION

MARGINAL FREQUENCY DISTRIBUTION OF WEIGHT

CI	40 - 44	45 – 49	50 - 54	55 – 59	TOTAL
F	18	13	12	17	60

CONDITIONAL DISTRIBUTION OF WEIGHT WHEN HEIGHT LIES IN 110 - 119

CI	40 - 44	45 – 49	50 - 54	55 – 59	TOTAL
F	6	3	6	4	19

05. if for bi - variate data \overline{x} = 10 and \overline{y} = 12, variance V(x) = 9; σy = 4 & r = 0.6

```
Estimate x when y = 10

SOLUTION

X on Y

bxy = r \frac{\sigma x}{\sigma y} = 0.6 \times \frac{3}{4} = 0.45

x - \overline{x} = bxy(y - \overline{y})

x - 10 = 0.45(y - 12)

Put y = 10

x - 10 = 0.45(10 - 12)

x - 10 = 0.45(-2)

x - 10 = -0.9

x = 9.1
```

06. for 50 students of a class the regression equation of marks in Statistics (x) on the marks in accounts (y) is 3y - 5x + 180 = 0. The mean of marks of accounts is 44 Find mean marks of Statistics

SOLUTION

X on Y : 3y - 5x + 180 = 0Put $\overline{y} = 44$

> 3(44) - 5x + 180 = 0 132 - 5x + 180 = 0 312 - 5x = 0 5x = 312 $\overline{x} = 62.4$

Q2. ATTEMPT ANY 4 OUT OF 5 (3 MARKS EACH)

01. Compute rank correlation coefficient for the following data

Rx	:	1	2	3	4	5	6
Ry	:	6	3	2	1	4	5

SOLUTION

x	У	d = x - y	d ²
1	6	5	25
2	3	1	1
3	2	1	1
4	1	3	9
5	4	1	1
6	5	1	1
			$\Sigma d^2 = 38$

$$R = 1 - \frac{6\Sigma d^2}{n(n^2 - 1)}$$
$$= 1 - \frac{6(38)}{6(36 - 1)}$$
$$= 1 - \frac{38}{35}$$
$$= -\frac{3}{35}$$
$$= -0.086$$

02. find number of pair of observations from the following data

r = 0.4 ; Σxy = 108 ; SDy = 3 ; Σx^2 = 900 ; where x and y are deviations from their respective means <code>solution</code>

$$r = 0.4 ; \Sigma(x - \overline{x})(y - \overline{y}) = 108 ;$$

$$\sigma y = 3 ; \Sigma(x - \overline{x})^2 = 900$$

$$\sigma y = 3$$

$$\sqrt{\frac{\Sigma(y - \overline{y})^2}{n}} = 3$$

$$\sqrt{\frac{\Sigma(y - \overline{y})^2}{n}} = 3\sqrt{n}$$

$$r = \frac{\Sigma(x - \overline{x}) \cdot (y - \overline{y})}{\sqrt{\frac{\Sigma(x - \overline{x})^2}{\sum(y - \overline{y})^2}}}$$

$$0.4 = \frac{108}{\sqrt{900 \cdot 3}\sqrt{n}}$$

$$\frac{4}{10} = \frac{108 \times 10}{30 \times 3 \times 4}$$

$$\sqrt{n} = 3$$

Squaring ; $n = 9$

03. n = 15; $\overline{x} = 25$; $\overline{y} = 18$; $\sigma x = 3.01$; $\sigma y = 3.03$, $\Sigma(x - \overline{x})(y - \overline{y}) = 122$. Find the correlation coefficient <u>SOLUTION</u>

$$r = \frac{\cos(x, y)}{\sigma x \cdot \sigma y}$$

$$r = \frac{\sum(x - \overline{x})(y - \overline{y})}{\sigma x \cdot \sigma y}$$

$$r = \frac{\frac{122}{15}}{3.01 \times 3.03}$$

$$r = \frac{122}{15 \times 3.01 \times 3.03}$$

Taking log on both sides

Log r =
$$\log 122 - (\log 15 + \log 3.01 + \log 3.03)$$

Log r = $2.0864 - (1.1761 + 0.4786 + 0.4814)$
Log r = $2.0864 - 2.1361$
Log r = $\overline{1.9503}$
r = AL ($\overline{1}$. 9503)
r = 0.8919

04. $\sum x_i = 56$; $\sum y_i = 56$; $\sum x_i^2 = 476$; $\sum y_i^2 = 476$; $\sum x_i y_i = 469$, n = 7 a) Obtain linear regression of Y on X b) y if x = 12 **SOLUTION**

$$\overline{x} = \frac{\Sigma x}{n} = \frac{56}{7} = 8$$

$$\overline{y} = \frac{\Sigma y}{n} = \frac{56}{7} = 8$$
by
$$x = \frac{n\Sigma xy - \Sigma x.\Sigma y}{n\Sigma x^2 - (\Sigma x)^2}$$

$$= \frac{7(469) - (56)(56)}{7(476) - (56)^2}$$

$$= \frac{3283 - 3136}{3332 - 3136}$$

$$= \frac{147}{196}$$

$$= \frac{21}{28}$$

$$= \frac{3}{4}$$

$$= 0.75$$
Equation
$$y - \overline{y} = byx (x - \overline{x})$$

$$y - 8 = 0.75 (x - 8)$$

$$y = 0.75 (x - 8)$$

$$y - 8 = 0.75 (x - 8)$$

$$y = 0.75 (x - 8)$$

05. you are given below the following information about advertising and sales

	Adv. Exp. (x)	sales (y)	in lacs
Mean	10	90	
S.D.	3	12	r = 0.8

Obtain the regression line to estimate the likely sales when adv. budget is \Box 15 lacs

SOLUTION

y on x $byx = r \cdot \frac{\sigma y}{\sigma x}$ $= 0.8 \times \frac{12}{3}$ $= 0.8 \times 4 = 3.2$ $y - \overline{y} = byx(x - \overline{x})$ y - 90 = 3.2(x - 10) y - 90 = 3.2x - 32 y = 3.2x - 32 + 90 y = 3.2x + 58Put x = 15 y = 3.2(15) + 58 y = 48 + 58 y = 106 Sales = \Box 106 \text{ lacs when Adv. budget} = \Box 15 \text{ lacs}

Q3. ATTEMPT ANY 2 OUT OF 3 (4 MARKS EACH)

01. the equ's of the regression lines are 2x + 3y - 6 = 0 & 5x + 7y - 12 = 0Find a) correlation coefficient b) $\sigma x/\sigma y$ SOLUTION

STEP 1

```
ASSUME
XON Y : 5x + 7y - 12 = 0
           5x = -7y + 12
           x = -\frac{7y}{5} + \frac{12}{5}
           bxy = -\frac{7}{5}
Y ON X : 2x + 3y - 6 = 0
           3y = -2x + 6
           y = -\frac{2}{3}y + \frac{6}{3}
          byx = -\frac{2}{3}
STEP 2
r<sup>2</sup> = bxy.byx
       = -\frac{7}{4} \times \frac{-2}{3}
        = <u>14</u>
           15
Since 0 \le r^2 \le 1
Our assumptions are correct
r = \pm \frac{14}{15}
r = -\sqrt{\frac{14}{15}} (byx & bxy are -ve)
\log r' = \frac{1}{2} (\log 14 - \log 15)
\log r' = \frac{1}{2} (1.1461 - 1.1761)
\log r' = \frac{1.1461}{2} - \frac{1.1761}{2}
```

$$\log r' = 0.5730 - 0.5880$$

$$\log r' = 1.9850$$

$$r' = AL(1.9850)$$

$$r' = 0.9661$$

$$r = -0.9661$$

$$STEP 3$$

$$bxy = r \frac{\sigma x}{\sigma y}$$

$$-7 = -0.9661 \times \frac{\sigma x}{\sigma y}$$

$$\frac{\sigma x}{5} = 7$$

$$\frac{\sigma x}{5 \times 0.9661}$$

$$= \frac{7}{4.8304}$$

$$= 1.449$$

Page 10 of 12

02.	х	:	3	2	1	5	4

y: 8 4 10 2 6

Compute Karl Pearsons Correlation coefficient

SOLUTION

x	у	x-x	y-y	$(x - x)^2$	(y – y) ²	$(x - \overline{x})(y - \overline{y})$
3	8	0	2	0	4	0
2	4	-1	-2	1	4	2
1	10	-2	4	4	16	-8
5	2	2	-4	4	16	-8
4	6	1	0	1	0	0
15	30	0	0	10	40	-14
ΣΧ	Σy	$\Sigma(x-x)$	$\Sigma(y-\overline{y})$	$\Sigma(x-\overline{x})^2$	$\Sigma(y-\overline{y})^2$	$\Sigma(x-\overline{x})(y-\overline{y})$
x = 3	<u>y</u> = 6					

$$r = \frac{\Sigma (x - \overline{x}) \cdot (y - \overline{y})}{\sqrt{\Sigma (x - \overline{x})^2} \sqrt{\Sigma (y - \overline{y})^2}}$$

$$r = \frac{-14}{\sqrt{10 \times \sqrt{40}}}$$

$$r = \frac{-14}{\sqrt{400}}$$

$$r = -\frac{14}{20}$$

$$r = -0.7$$

03. for an experimental project, a Company collected data of 7 persons from Human resource development department referring to years of service and their monthly incomes

Years of service	:	11	07	09	05	80	06	10
Income (in 000's)	:	10	08	06	05	09	07	11
Find the regression equation of income on the years of service								
SOLUTION								

x	у	x - x	y – y	$(x-\overline{x})^2$	$(y - \overline{y})^2$	$(x - \overline{x})(y - \overline{y})$
11	10	3	2	9		6
7	8	- 1	0	1		0
9	6	1	- 2	1		- 2
5	5	- 3	- 3	9		9
8	9	0	1	0		0
6	7	-2	- 1	4		2
10	11	2	3	4		6
56	56	0	0	28		21
$\frac{\Sigma \mathbf{x}}{\mathbf{x}} =$	$7 \frac{\Sigma y}{y} =$	7		$\Sigma(x-\overline{x})^2$	$\Sigma(y-\overline{y})^2$	$\Sigma(x-\overline{x})(y-\overline{y})$

byx =
$$\sum (x - \overline{x})(y - \overline{y})$$

 $\sum (x - x)^2$
y - \overline{y} = byx $(x - \overline{x})$
y - $\overline{8}$ = 0.75 $(x - 8)$
y - 8 = 0.75 $x - 6$
y = 0.75 $x - 6 + 8$
y = 0.75 $x + 2$
Put x = 13
y = 0.75 $(13) + 2$
= 9.75 + 2
= 11.75(000's)